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Vision

* Processors faster, disk densities up, but |10
rates flat

* | everage intelligent peripherals to improve
performance

* OSDs offer higher-level semantic interface

* Secure, direct access of storage by clients

* Our work
— Examine role of OSDs in parallel file systems
- Analyze trade-offs of using OSDs for various
aspects of parallel FSes
- Develop extensions required for efficient use of
OSDs in HPC parallel environments
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Mapping Data to Objects

* Block-based "objects" are 512 bytes
* OSD objects could be files
* For striped files, object is stripe, or stripe set?
* Collection feature allows grouping objects
- flush, remove, list, access control

* Delegating object creation to clients
— maybe using collection container

* When to create objects on create?
- lazy, preallocate




Metadata

* OSDs store attributes with objects

* How do parallel FS attributes map to these?
— uid, gid, perm, [acm]time, type
* mtime of object vs mtime of file
- size, link target, dfile count, dirent count, dir hint
— Xattrs
— metafile contents (datafile handles, distribution)
— directories themselves?
* Managing collective behavior
— object allocation, fsck, rebalancing
- use OSDs for metadata management too?
* Select objects by attribute
— data-introspective extensions



Other Topics

* Transport
— choice of RDMA direction based on usage intent
= link flow control and object information
— drive prefetch, write-behind by object info
* Caching
— attributes can be used to build DLM
- versioning FS
— dial-a-consistency approach
* Reliablility
— manage disk cache explicitly
— auto-checksum or auto-duplicate some objects



Implementation

* All in context of PVFS

* Open source, LGPL license, release often

e Maximize benefit to other researchers and
production implementations

* Particular components
— specific client-side transport protocol for OSDs
— separate out "meta"” and "data" operations
— metaserver may need to initiate "data” operations

* OSD implementations
- iSCSI initiatiors (IBM user, stock kernel)
- ISCSI target (IET kernel), stgt (user/kernel)
— OSD initiator (IBM, Intel)
— OSD target (Intel, IBM (no source))



application

application OSD command

PVFS_server_req PVFS_server_req read, write ISCSI .
TCP, IB

kernel VFS
TCP, GM, IB . TCP, GM, IB
sd (scsi disk) C D

N\




Conclusion

* Enable higher semantic interface to storage

* Avoid middle-box interference on data path

* Understand roles of clients, metadata servers,
|O servers, lock servers, etc in parallel FSes

* Cooperation welcomed



